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Fourier analysis of a class of upwind schemes in shallow water
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SUMMARY

A Fourier analysis has been performed for a class of upwind finite volume schemes, including the study of
phase speed, group velocity, damping and dispersion. In the first part, pure gravity waves are investigated.
As expected, most upwind schemes lead to a significant damping, but they exhibit a better phase behavior
than most centered schemes. In the second part, the Coriolis parameter is considered and the Rossby
modes are studied. In this case, all selected upwind schemes lead to a severe damping. The numerical
results are also compared with those obtained by using a slope limiter approach. It is concluded that most
upwind schemes with or without slope limiters present poor results for an accurate calculation of the
Rossby modes. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Finite volume schemes are well known due to their inherent conservation properties. In addition,
upwind finite volume schemes have become popular for hyperbolic systems during the past two
decades due to their ability to capture discontinuities with a low level of numerical diffusion
and oscillations. For these methods, the critical stage is the calculation of the numerical flux and
various schemes have been developed based on different approaches for estimation of those fluxes
(see, e.g. [1, 2]).

Upwind finite volume schemes use the characteristic information of the hyperbolic system to
calculate numerical fluxes. In the case of the scalar advection equation, this simply leads to a
biased discretization of the equation in the flow direction. However, this is not the case for coupled
systems, such as the shallow water equations. This is because the flow direction is not the only
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factor to be considered in the calculation of the numerical fluxes. In fact, for coupled systems, the
flux vector must be decomposed in the basis of eigenvectors and each component is then calculated
in an upwind manner based on the sign of the corresponding eigenvalue.

Extensive research has been dedicated to the study of upwind schemes for shallow water
systems, especially in the convection-dominated cases, i.e. for hyperbolic formulations (see e.g. [2]).
Upwind finite volume schemes have been successfully employed for the simulation of some chal-
lenging problems for shallow flows such as dam break flows and supercritical flows over spillways
(e.g. [3–5]).

Fourier analysis is a useful tool to study the effect of discrete schemes on some quantities such
as wave amplitude, phase speed and group velocity. The analytical form of those quantities should
be preserved by an ideal numerical method. Further, the Fourier analysis may give guidelines for
a proper selection of numerical parameters such as the Courant–Friedrich–Lewy (CFL) number.
Note that the Fourier analysis has been applied to the discretized form of the shallow water
equations using finite difference (e.g. [6–11]), and finite element methods [12–17]. Note that
Sankaranarayanan and Spaulding [11] considered the boundary fitted coordinates and the Fourier
analysis was performed in transformed plane. The dispersion relation for the least-squares-mixed
formulation of the shallow water equations has also been analyzed by Le Roux and Carey [18] and
the results are compared with those of the Galerkin scheme. They concluded that the method should
be used with care particularly for long-term simulations due to its inherent numerical damping.

The discretization of the shallow water system using upwind schemes has been rarely studied by
the Fourier analysis. This is because slope/flux limiters are inherent to most upwind formulations
and cannot be included in a Fourier-type analysis. Szpilka and Kolar [19] have numerically studied
the phase and damping errors of some slope limiters. However, such a study can only be performed
for a few sets of parameters due to the excessive amount of required numerical computations.

Gossard and Kolar [20] performed Fourier and dispersion analyses of the first-order upwind finite
volume scheme for the shallow water equations, where slope limiters are not involved. They have
concluded that such a scheme exhibits a good phase behavior. Owing to the inherent conservation
of finite volume schemes, the work of Gossard and Kolar [20] motivates the study of higher order
upwind finite volume schemes. Moreover, such a study seems necessary because, as shown in the
following, the use of slope limiters is not necessarily recommended for all types of waves. Indeed,
shallow water equations permit various waves, including fast gravity and slow Rossby modes. The
later are due to the Earth rotation and usually need to be computed quite accurately [21]. This is
because most energy transfer in the ocean scale is due to these waves. As shown later, the amplitude
of the Rossby modes is considerably damped by the use of slope limiters in upwind finite volume
schemes, which has not been reported earlier in the literature, up to our knowledge. Note that the
study of Gossard and Kolar [20] is concerned only with the propagation of gravity waves. Such
waves are important for small scale flows, e.g. estuaries, but not for large-scale flows such as
global ocean circulation. Indeed, unless an accurate representation of the fast modes is important,
gravity waves may be regarded as small amplitude noise superimposed on the slow solution and
they can be justifiably retarded or damped, which is usually the case in ocean modeling.

The present paper is dedicated to dispersion and Fourier analyses of high-order upwind finite
volume schemes for gravity and Rossby waves and it is organized as follows. The model equations
for the pure gravity waves are introduced in Section 2. Various finite volume schemes are presented
in Section 3 for these waves, and their Fourier analysis in a semi-discretization framework is
performed in Section 4. The temporal discretization method is explained in Section 5 and the
behavior of the resulting fully discrete schemes is studied in Section 6. The model equations for
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Rossby waves are then introduced in Section 7 and a Fourier analysis is also performed. Some
numerical test cases are presented in Section 8 and concluding remarks complete the study.

2. MODEL PROBLEM FOR GRAVITY WAVES

The one-dimensional, inviscid, linearized form of the shallow water equations may be expressed
in Cartesian coordinates [21] as

�t +Hux =0 (1)

ut +g�x =0 (2)

where u is the velocity variable, � is the surface elevation with respect to the reference level z=0,
g is the gravitational acceleration and the mean depth H is assumed constant.

In the present analysis, (1)–(2) are solved on an infinite channel (i.e. with periodic boundary
conditions) subject to initial conditions. System (1)–(2) could be written in the following conser-
vative vector form:

�U
�t

+ �F
�x

=0 (3)

where

U=
[

�

u

]
, F=

[
Hu

g�

]
(4)

System (1)–(2) can also be written in the following non-conservative form

�U
�t

+A
�U
�x

=0 (5)

where

A=
[
0 H

g 0

]
(6)

Matrix A has two real eigenvalues

�1=√gH, �2=−√gH (7)

with the following corresponding eigenvectors:

e1=
[

1

+√g/H

]
, e2=

[
1

−√g/H

]
(8)

Matrix A is decomposed as

A=PDP−1 (9)
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where D is the diagonal matrix including the eigenvalues of A as

D=
[

�1 0

0 �2

]
=
[√

gH 0

0 −√gH

]
(10)

and P is the matrix including the eigenvectors of A as

P=[e1,e2]=
[

1 1√
g/H −√g/H

]
(11)

and the inverse matrix P−1 is given by

P−1= 1

2

[
1

√
H/g

1 −√H/g

]
(12)

Define

D+ =
[
max(�1,0) 0

0 max(�2,0)

]
(13)

D− =D−D+ (14)

or

D+ =
[√

gH 0

0 0

]
, D− =

[
0 0

0 −√gH

]
(15)

and

|D|=
[|�2| 0

0 |�2|

]
=
[√

gH 0

0
√
gH

]
(16)

Therefore, matrix A is decomposed as

A= A++A− (17)

where

A+ =PD+P−1=
[√

gH/2 H/2

g/2
√
gH/2

]
(18)

and

A− =PD−P−1=
[−√gH/2 H/2

g/2 −√gH/2

]
(19)

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 57:389–416
DOI: 10.1002/fld



FOURIER ANALYSIS OF A CLASS OF UPWIND SCHEMES 393

3. NUMERICAL ALGORITHM

In the finite volume method, the equations are integrated in each computational cell. This leads to∫
�c

(
�U
�t

+ �F
�x

)
dx=0 (20)

where �c represents the area of a 1D time–space control volume. The divergence theorem is then
employed to replace the volume integral by a surface one

d

dt

∫
�c

Udx+
∫

�c

F ·nd�c=0 (21)

where �c represents the boundary of a control volume and n is its unit outward normal vector.
For the one dimensional case, (21) is rewritten as

d

dt
U j (t)=−F j+1/2(t)−F j−1/2(t)

�x
(22)

where U j (t) represents the cell-averaged value of conserved variables and F j+1/2(t) is the numer-
ical flux. For the various numerical schemes employed in this study, the corresponding numerical
fluxes (see, e.g. [2]) are given in the following.

For the centered scheme we have

F j+1/2=0.5(F j+1+F j ) (23)

The first-order upwind scheme (1st) gives

F j+1/2= A−U j+1+A+U j (24)

or equivalently

F j+1/2=0.5(F j+1+F j )−0.5|A|(U j+1−U j ) (25)

where

|A|= P|D|P−1 (26)

In (25), the first-order upwind flux is equal to the centered flux in (23) plus an artificial diffusive
flux, which stabilizes the numerical scheme. A class of higher order schemes may be constructed
by calculating the interface values more accurately, e.g. as in the � scheme. In this method, which
includes a family of schemes, the numerical flux is calculated as

F j+1/2=0.5(FL
j+1/2+FR

j+1/2)−0.5|A|(UL
j+1/2−UR

j+1/2) (27)

where the superscripts R an L represent the evaluation of the right and left sides of the interface,
respectively, with

FL
j+1/2=F(UL

j+1/2) (28)

FR
j+1/2=F(UR

j+1/2) (29)
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Figure 1. Upwind polynomial fitting for the 3rdCell scheme. A cubic curve is fitted such that the mass
is conserved in four consecutive cells.

The interface values UL
j+1/2 and UR

j+1/2 are calculated at the interface j+1/2 as

UL
j+1/2=U j + 1

4 ((1−�)(U j −U j−1)+(1+�)(U j+1−U j )) (30)

UR
j+1/2=U j+1− 1

4 ((1−�)(U j+2−U j+1)+(1+�)(U j+1−U j )) (31)

where the choice of � leads to the following schemes:

�=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1 second-order upwind

0 simplified Fromm scheme

1/6 cell-based third-order upwind

1/3 third-order upwind

1/2 Quick scheme

1 centered scheme

(32)

Among the schemes given above, the centered and second-order upwind (2nd) schemes are well
documented in the literature (see, e.g. [1]), the Quick scheme is a simplified version of the method
presented in Leonard [22] where the third-order upwind scheme (3rd) is also introduced, and the
Fromm scheme is a limiting case of the method proposed in Fromm [23].

The cell-based (formally) third-order accurate discretization (3rdCell) for a 1D problem, which
is introduced here for the first time to our knowledge, is obtained by fitting a cubic curve over
four consecutive computational cells, such that the total mass of each cell is correctly represented
by the corresponding cubic curve for each conserved variable, i.e. (Figure 1)∫ xi+1/2

xi−1/2

Uup
j (x)dx=Ui�x, for i= j−2, j−1, j, j+1 (33)

where Uup
j (x) denotes the constructed upwind polynomial for the cell j . Note that the upwind

polynomial fitting is performed by using two cells at the upstream side of the cell j and one cell
in the downstream side. This leads to the following cubic polynomial:

Uup
j (x)=a3x3+a2x2+a1x2+a0, −�x/2�x��x/2 (34)

where

a3= 1

24�x3
(4U j+1−12U j +12U j−1−4U j−2) (35)
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a2= 1

24�x2
(12U j+1−24U j +12U j−1) (36)

a1= 1

24�x
(7U j+1+15U j −27U j−1+5U j−2) (37)

a0= 1
24 (−U j+1+26U j −U j−1) (38)

The interface values is then adjusted such that the condition

�Uup
j (x)

�x

∣∣∣∣∣
x=0

= UL
j+1/2−UL

j−1/2

�x
(39)

is satisfied. That is, the left-hand side in (39) is known using the (conservative) cubic polynomial
in (34) as

�Uup
j (x)

�x

∣∣∣∣∣
x=0

= 7U j+1+15U j −27U j−1+5U j−2

24�x
(40)

and the left interface values UL
j+1/2 and UL

j−1/2 in the right-hand side of (39) are sought such that
condition (39) is satisfied. This leads to the following (left) interface value

UL
j+1/2= 1

24 (7U j+1+22U j −5U j−1) (41)

In a similar way, the downwind polynomial Udn
j (x) is constructed for the cell j as∫ xi+1/2

xi−1/2

Udn
j (x)dx=Ui�x for i= j−1, j, j+1, j+2 (42)

and the (right) interface value is obtained as

UR
j+1/2= 1

24 (−5U j+2+22U j+1+7U j ) (43)

Note that the cell-based third-order accurate method may be written in the � scheme form, with
�= 1

6 , as mentioned in (32). We remind the reader that the 3rdCell scheme is conservative because
it is written in the flux form (22) and the above-mentioned polynomial fitting is only performed to
compute the interface values. Indeed, in the general flux formula in (27), the left and right interface
values UL

j+1/2 and UR
j+1/2 are used to compute the flux and the resulting scheme is conservative

because the flux across the cell interfaces is continuous. That is, the mass exiting from a cell enters
into the adjacent cell; hence, the total mass is conserved.

Finally, we remark here that special treatments are needed for the implementation of the numer-
ical schemes at boundaries. For the upwind schemes, the boundary conditions are usually specified
based on the theory of the characteristics which is beyond the scope of present paper and in the
Fourier analyses performed here, the boundaries are assumed to be periodic. That is, the general
behavior of the upwind schemes with no effects from boundaries is studied in this paper.
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4. FOURIER ANALYSIS FOR THE SPATIAL DISCRETIZATION SCHEMES

Substituting periodic solutions of the form u=Re[̃uei(kx+�t)] and �=Re[̃�ei(kx+�t)] into (1) and
(2), where ũ and �̃ are amplitudes, k is the wave number in the x-direction and � is the angular
frequency, we obtain (

� gk

Hk �

)(
�̃

ũ

)
=0 (44)

Noting that the determinant of the matrix in the left-hand side of (44) must be zero for a nontrivial
solution, an equation for the frequency or the so-called dispersion relation is obtained:

�2−gHk2=0 (45)

The two (analytic) solutions �AN=±√
gHk correspond to the free-surface gravitational modes.

The gravity waves can propagate along the −x axis in both directions at a speed c=�AN/k=√
gH,

independent of the wave number k; hence, there is no dispersion of the waves.
Phase (C) and group (G) velocities are calculated using

C= �r

k
(46)

G= ��r

�k
(47)

where �r represents the real part of �. For the analytical case, we obviously have

�r=�AN (48)

As for the continuum case, the dispersion relation for the discrete scheme is found through a
Fourier expansion. An ideal numerical scheme should present similar dispersion relation to the
continuous mode in (45). A monotonic curve for �(k) indicates that the numerical solution is
free of spurious 2�x oscillations [24]. Such oscillations have been observed in a number of finite
difference grids [9, 25] and finite element schemes [13].

Usually, numerical models are set up [26] such that the desired wavelengths are resolved at
least by 20 cells (i.e. k�x/��0.1). Therefore, in the following, the range k�x/��0.1 will be
referred as the region of interest. The remaining region is generally concerned with the shorter
waves, which do not transfer much energy. However, phase error for these waves, particularly
for the 2�x waves, could lead to oscillatory results unless they are effectively damped. Indeed, it
is expected that an ideal numerical scheme preserves the amplitude of the waves, i.e. with zero
damping error. This is the case when all wave numbers are transferred with the correct speed.
However, zero damping error is not always desirable because most schemes have phase speed
errors for high frequencies; hence, it is desirable to damp them in this case. This is particularly
true for the 2�x waves. This damping does not seriously affect the whole numerical simulation
because most energy is transferred via waves of intermediate and small wave numbers rather than
high-frequency waves.

In order to obtain the dispersion relation for the discretized equations, the solutions

(� j ,u j )=Re[(̃�, ũ)ei(kx j+�t)] (49)
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Table I. d+ and d− for the first-order upwind and the � scheme.

The first-order upwind scheme The � scheme

d+ i sin(k�x) [sin(k�x)(6−2�)−sin(2k�x)(1−�)]/4
d− 1−cos(k�x) [3−4cos(k�x)+cos(2k�x)](1−�)/4

are sought at nodes j =1,2,3, . . . , where (� j ,u j ) are the nodal unknowns that appear in the
selected discrete equations and (̃�, ũ) are amplitudes. The x j coordinates are expressed in terms
of a distance to a reference node. Note that owing to the special discretization limitation, the wave
vector space for the discrete schemes presented above is truncated at k�x=� and the maximum
resolvable wavelength is 2�x . Substituting (49) in the discrete equations (22) leads to a square
matrix system for the Fourier amplitudes as⎡⎣i�+d−√gH/�x Hd+/�x

gd+/�x i�+d−√gH/�x

⎤⎦[ �̃

ũ

]
=
[
0

0

]
(50)

where d+ and d− are given in Table I for the first-order upwind and � schemes.
The dispersion relation is then obtained by setting the determinant of the matrix system to zero,

and this leads to

i�+√gH/�xd− =±√gHd+/�x (51)

or

�= i

√
gH

�x
(d−±d+) (52)

For the first-order upwind scheme, the resulting equation for the frequency is written as [20]

�=
√
gH

�x
[i(1−cos(k�x))±sin(k�x)] (53)

and for the � scheme we obtain

�=
√
gH

4�x
[i(3−4cos(k�x)+cos(2k�x))(1−�)±(sin(k�x)(6−2�)−sin(2k�x)(1−�))] (54)

The two roots of � have equal imaginary parts but their real parts are of different signs, i.e. the
two waves move in different directions as in the continuous system. The imaginary part of �
deals with damping, which is equal here for both waves and this means that the symmetry of the
continuous system is preserved in the numerical method. A positive imaginary part for � leads
to amplification factor less than one due to the selected form of the solution as ei(kx j+�t). The
imaginary part of � for the first-order upwind scheme in (53) is always positive; hence, the results
of the first-order upwind scheme remain bounded. The imaginary part of � for the � scheme in
(54) becomes

�Im=
√
gH

4�x
[(3−4cos(k�x)+cos(2k�x))(1−�)] (55)
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Figure 2. The term [3−4cos(k�x)+cos(2k�x)]/4 in the real part of the frequency in (54).
The horizontal axis represents k�x/�.

The term [3−4cos(k�x)+cos(2k�x)] in (55) is always positive as graphed in Figure 2. It
rapidly increases for intermediate waves with k�x/� roughly between 0.4 and 0.8 and reaches its
highest values for the shortest resolvable waves (with k�x=�) where both terms −4cos(k�x) and
cos(2k�x) are maximized, as graphed in Figure 2. Hence, the short waves are largely damped,
which is desirable as explained above to prevent numerical osculation due to phase errors at
high-frequency waves. Moreover, �I →0 for long waves; thus, the long waves that transfer most
of energy are damped much less than the short waves. In order to have �Im�0, the term (1−�)

must be also positive and this leads to a stability region given by ��1. Note that for all selected
schemes, we have ��1, which ensures that the imaginary part of � is positive and the numerical
solution remains bounded. The particular case of �=1, corresponding to the standard centered
difference scheme, leads to no damping or neutral stability as expected. Moreover, since �Im is
proportional to (1−�), a low level of damping is expected for the schemes with larger � (within
the stability region ��1). For instance, the second-order scheme with �=−1 leads to the highest
level of damping among the selected methods and the Quick scheme leads to a lower level of
damping than the 3rd scheme. This is clearly confirmed in Figure 3(a) where the damping for all
schemes is graphed for various wave numbers.

The results of phase speed and group velocity are presented in Figure 3(b) and (c). The term �R=
(sin(k�x)(6−2�)−sin(2k�x)(1−�))/4�x in the real part of the frequency in (54) is responsible
for phase error. It could be easily verified that �R→1 for long waves (whatever � is); hence, all
schemes perform well at the large wave number limit. On the other hand, all schemes decelerate
the short waves. This is because for short waves, the terms sin(k�x) and −sin(2k�x) collaborate
since they both have the same sign. Recall that the two coefficients (6−2�) and (1−�) are both
positive in the stability region.

Of fundamental importance is the observation that waves of length 2�x have zero frequency, i.e.
�=0, due to the terms sin(k�x) and sin(2k�x) in the real part of the frequency equations in (53)
and (54), which are both zero for the shortest resolvable waves (k�x=�). Hence �R=0, implying
zero phase velocity for the shortest resolvable waves, i.e. they do not propagate at all. Generally,
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Figure 3. Various numerical properties of different spatial discretization schemes: (a) damping
(exp(−Im(w�x)/

√
gH)); (b) phase speed (C/

√
gH); (c) group velocity (G/

√
gH); and (d) frequency

(Re(��x)/
√
gH). Horizontal coordinate represents k�x/�.

this may lead to numerical oscillations; however, it is not the case here due to the damping of
short waves as discussed above.

The 3rd and quick schemes decelerate all waves, while 3rdCell, Fromm and 2nd accelerate
long waves and decelerate short waves. Hence, a switching algorithm may be useful to balance
accelerations with deceleration (e.g. alternately using 3rd and Fromm schemes during time steps).
The second-order upwind scheme leads to poor group velocity results as it is expected from its
phase behavior discussed before. The Quick method leads to significant phase and group velocity
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Figure 4. Phase speed C/
√
gH (left) and group velocity G/

√
gH (right) for various spatial discretization

schemes in the region of interest. Horizontal coordinate is k�x/�.

error with little damping. Hence, it may lead to a high level of numerical oscillations. Although
the Quick scheme presents higher accuracy for the group velocity of short waves, this is not very
important because most of energy (which propagates with group velocity) is due to long waves.
The 3rdCell and Fromm schemes give very close phase and group velocities. However, the 3rdCell
has better phase and group velocities than the Fromm scheme in the region of interest, as shown
in Figure 4, where the results of the former method are closer to the analytical ones. Moreover,
in Figure 3(a), the 3rdCell appears less diffusive than the Fromm scheme. Hence, by considering
phase and group velocities and damping, the 3rdCell may be preferred to the Fromm scheme at
this stage of the argument.

Note that in Figure 4, the 3rd scheme gives the best results for the phase speed and group
velocity in the region of interest (long waves); it nearly matches the analytical one. Moreover, it
has less numerical damping than the 3rdCell. Hence, the 3rd scheme is superior to the 3rdCell
for long waves. However, the 3rdCell scheme presents less phase error and more damping for
intermediate and short waves; hence, it leads to less numerical oscillations than the 3rd scheme.
Moreover, as will be shown in Section 6, when the effect of time-discretization scheme is also
considered, such an accurate phase behavior of the 3rd scheme remains the same only for small
CFL numbers.

The numerical results for Re(�) are plotted in Figure 3(d). All selected numerical methods lead
to a folded dispersion plot. This is due to the presence of the terms sin(k�x) and sin(2k�x) in
the real part of the frequency equations (53) and (54) which are not monotonic. We remind the
reader that a folded dispersion plot implies aliasing problems since two separate wave vectors can
contribute to the same frequency [24] and thus, all the above-mentioned schemes may encounter
aliasing problems.

For most numerical schemes, the cutoff frequency corresponds to zero group velocity and
maximum frequency i.e. the folding point of the frequency plot. After the cutoff frequency, the

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 57:389–416
DOI: 10.1002/fld



FOURIER ANALYSIS OF A CLASS OF UPWIND SCHEMES 401

group velocity becomes negative. Since energy propagates with the group velocity, this means that
energy moves in a wrong direction after the cutoff frequency, which is not desirable. In Figure 3(c)

and (d), the cutoff frequency ranges from �/2 to �−cos−1(− 1
2 +

√
3
2 ) or approximately 0.6193 �

and those values correspond to the first- and second-order upwind schemes, respectively. The cutoff
frequency of the cell-based third-order upwind scheme is larger than the classical (point-wise)
third-order upwind method. The former gives here intermediate results between the 3rd and Fromm
schemes. The cutoff frequency is larger for the 2nd scheme than the other schemes. However, the
2nd scheme largely overestimates the frequency of long waves; hence, the Fromm scheme may
be preferred in terms of dispersion relation in Figure 3(d). However, it should be stressed that the
temporal integration scheme may have a significant impact on the dispersion relation (see, e.g.
[27]), this will be examined in the next section.

We now consider the influence of the temporal discretization.

5. TEMPORAL DISCRETIZATION

At a given time step �t= tn+1− tn we use a general time discretization of (22) of the form

un+1
j + �t

�x
�(Fn+1

j+1/2−Fn+1
j−1/2)=unj +

�t

�x
(1−�)(Fn

j+1/2−Fn
j−1/2) (56)

where � is a real parameter such that 0���1. Observe that the standard choices �=0, 1
2 ,1

yield the respective forward Euler, trapezoidal Crank–Nicolson and backward Euler-type schemes.
Other choices such as Runge–Kutta schemes are possible, but they would make the present
stability/dispersion analysis much less tractable.

6. FOURIER ANALYSIS FOR THE FULLY DISCRETIZED SCHEMES

A Fourier analysis is now conducted for both spatial and temporal schemes. By substituting periodic
solutions of the form (�nj ,u

n
j )=Re[(̃�, ũ)ei(kx j+�tn)] into (56), we obtain[

E−1+ad−(�E+1−�) Hbd+(�E+1−�)

gbd+(�E+1−�) E−1+ad−(�E+1−�)

][
�̃

ũ

]
=
[
0

0

]
(57)

with a=√
gH�t/�x (the CFL number) and b=�t/�x .

An equation (also called dispersion relation) for the propagation factor, defined by E=ei��t ,
is then obtained by setting the determinant of the matrix in the left-hand side of (57) equal to
zero for a nontrivial solution. For both the first-order and the � schemes, the dispersion relation
leads to

E= 1+ i��t (1−�)

1− i��t�
(58)

where � is the frequency corresponding to the semi-discrete first-order and � schemes in (53)
and (54), respectively. It is straightforward to show that the first-order upwind scheme remains
stable for

√
gH�t/�x�1, even with a fully explicit time-discretization scheme (�=0). However,
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all other schemes may lead to unstable results (|E |>1) for �=0. Indeed, by setting �=0 in (58),
we obtain E=1+ i��t or

E=1+ a

4
[−(3−4cos(k�x)+cos(2k�x))(1−�)± i(sin(k�x)(6−2�)−sin(2k�x)(1−�))]

(59)

The amplification factor |E | is given in Figure 5, which shows unbounded growth even for small
CFL numbers. This could be also verified by expanding (59) around k�x=0 as

E=1+ i

√
gH�t

�x

[
−k�x+

(
− 1

12
+ �

4

)
(k�x)3

]
+O((k�x)4) (60)

which leads to |E |>1 for all CFL numbers at long waves limit, as confirmed in Figure 5(b) for
a small CFL number. On the other hand, for � ranging from 1

2 to 1, we observe a significant
damping for the � scheme (results not shown). Therefore, we use �= 1

2 for the � scheme. However,
for the first-order upwind scheme, a fully explicit method (�=0) is employed in the following
because the use of a Crank–Nicolson scheme would bring an excessive damping. The amplification
factor (|E |), the group velocity, the frequency (real part) and the phase speed ratio for various
schemes are plotted in Figures 6–8 for CFL=0.1,0.5 and 0.9, respectively, and will be discussed
in the following. Note that the behaviors in those plots could be also justified by examining
the corresponding formulas as performed for the semi-discrete case or by expansions as in (60).
However, such a justification is not necessary for the purpose of this paper and only the behavior
of various schemes is considered here.

Note that the results for small CFL number (CFL=0.1) are close to those of the semi-discretized
method. This is expected because the semi-discretized scheme could be viewed as the limit of the
fully discretized method for small time steps.

On the basis of Fourier analysis results, it is concluded that the numerical performance of upwind
schemes highly depends on the CFL number. The first-order upwind scheme is somehow better
than higher order schemes for CFL numbers close to one. This is expected because for CFL=1, the
first-order upwind scheme leads to point-by-point advection of the Riemann invariants, which is
the exact solution. However, in actual simulations the CFL is not constant over entire system (due
to the topographic changes, etc.); hence, the overall performance of schemes should be considered.

For the � scheme, the damping is smaller for short time steps (small CFL numbers) than long
time steps. However, it should be noted that, for a given total time of simulation, more time steps
are needed when CFL is small. Hence, the total damping after a given time of simulations may
be even larger when small CFL numbers are employed.

For CFL<0.5, e.g. in Figure 6(d) with CFL=0.1, all the curves are folded and waves of
wavelength 2�x (i.e. k�x=�) do not propagate. For CFL�0.5, as shown in Figures 7(d) and
8(d), the curves corresponding to the first- and second-order methods are no longer folded and
they are close to the monotonic continuous solution. In particular, for CFL=0.5, the first-order
upwind scheme exactly coincides with the analytical frequency and phase speed. This could be
also easily verified from the corresponding discrete dispersion relation. However, both 1st and 2nd
schemes have other serious drawbacks. Indeed, in the region of interest (k�x<�/10), the first-
order upwind scheme leads to an excessive damping and the second-order upwind scheme shows
significant phase and group velocity errors; the phase speed and group velocities of the 2nd scheme
at intermediate and high CFL numbers are non-monotonic with large deviations, and this could
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Figure 5. Amplification factor |E | for �=0 and various CFL numbers. Horizontal coordinate
represents k�x/�: (a) |E | for CFL=0.1; (b) |E | for CFL=0.1, with k�x/��0.1; (c) |E | for

CFL=0.5; and (d) |E | for CFL=0.9.

lead to oscillatory results due to the mixed acceleration and deceleration of wave components.
Therefore, the first-order and the second-order upwind schemes will no longer be considered in
the following.

The remaining schemes (i.e. 3rdCell, 3rd, Fromm and Quick) are now studied in more details,
as the HOA (high-order accurate) schemes. The cutoff frequency is progressively increasing as
the CFL number increases as shown in Figures 6(d), 7(d) and 8(d). In this respect, the Fromm
scheme exhibits the best behavior and the Quick one gives the worst results. Similar conclusions
have already been drawn for the semi-discrete case.
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Figure 6. Various numerical properties of the fully discretization schemes for CFL=0.1: (a) group velocity
(G/

√
gH for CFL=0.1); (b) damping (|E | for CFL=0.1); (c) phase speed (C/(�

√
gH) for CFL=0.1);

and (d) frequency for CFL=0.1 (��t/� for CFL=0.1). Horizontal coordinate represents k�x/�.

As shown in Figures 6–8, the performance of the HOA methods is improved regarding the phase
speed and the frequency for all wave numbers as the CFL number increases. As an example, if
we expand the phase velocity of the Fromm scheme around k�x=0, for CFL=0.5 we obtain

C

�
√
gH

= 1

�
+ 1

16�
(k�x)2+O((k�x)4) (61)
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Figure 7. Various numerical properties of the fully discretization schemes for CFL=0.5: (a) group velocity
(G/

√
gH for CFL=0.5); (b) damping (|E | for CFL=0.5); (c) phase speed (C/(�

√
gH) for CFL=0.5);

and (d) frequency for CFL=0.5 (��t/� for CFL=0.5). Horizontal coordinate represents k�x/�.

while the phase speed for CFL=0.9 leads to

C

�
√
gH

= 1

�
+ 19

1200�
(k�x)2+O((k�x)4) (62)

Obviously, the second-order term (1/16�)(k�x)2 in (61), which is positive, is responsible for
acceleration of long waves at CFL=0.5, while it becomes smaller (19/1200�)(k�x)2 at CFL=0.9
in (62).
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Figure 8. Various numerical properties of the fully discretization schemes for CFL=0.9: (a) group velocity
(G/

√
gH for CFL=0.9); (b) damping (|E | for CFL=0.9); (c) phase speed (C/(�

√
gH) for CFL=0.9);

and (d) frequency for CFL=0.9 (��t/� for CFL=0.9). Horizontal coordinate represents k�x/�.

The phase error of the Quick scheme is larger than the other HOA schemes. Moreover, it
exhibits less damping of short waves than the others. Hence, the Quick scheme is expected to
present the most oscillatory results compared with the other HOA schemes. Note that the numerical
oscillations are mostly due to short waves. Similarly, the 3rd scheme is more oscillatory than
3rdCell and Fromm schemes. The Fromm and the 3rdCell schemes have the most accurate phase
speed for high CFL numbers, as shown in Figure 8(c). Although they lead to zero phase speed for
2�x waves, they also induce a significant damping for those waves that largely prevents numerical
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Figure 9. Phase speed C/(�
√
gH) at CFL=0.5 (left) and at CFL=0.9 (right) for long waves.

Horizontal coordinate represents k�x/�.

oscillations. In particular, the 3rdCell scheme gives better phase speed results than the Fromm
method in the region of interest, whatever the CFL is.

Recall that the 3rd scheme gives the most accurate phase speed in the region of interest for the
semi-discrete case. However, for the fully discrete case, as the CFL number increases, the phase
speed of the 3rdCell scheme becomes better than the 3rd scheme at the region of interest as shown
in Figure 9. In particular, for large CFL number in Figures 8(c) and 9, the 3rdCell scheme gives
better results than the 3rd scheme both for the short and long waves. Hence, when the overall
performance for phase speed is considered, the 3rdcell scheme may be preferred to the 3rd and
Fromm schemes at large CFL numbers.

When considering the group velocity and the damping errors, the Quick scheme exhibits the
best results while the Fromm scheme has the largest errors, as shown in Figure 8(a) and (b). In
particular, the Fromm scheme shows a significant group velocity error for the 2�x waves at high
CFL numbers. This is because the phase speed curve presents a sharp gradient for the 2�x waves.
However, the Fromm scheme also shows the largest damping for those waves. Thus, short waves
do not lead to serious problems since energy transfer (with the group velocity) is mostly performed
by long waves rather than short ones. Again, for all HOA schemes, the group velocity accuracy
is improved as the CFL increases in the region of interest. The 3rdCell and 3rd schemes give
intermediate results between those of the Quick and Fromm schemes as shown in Figures 6–8.
This was largely expected due to the ordering of � values in (32). In particular, the 3rdCell method
gives better group velocity results than the Fromm scheme.

It should be emphasized that none of the selected schemes could be considered as the ‘best’
one since this choice largely depends on which quantity (frequency, damping, phase or group
velocity) is more important regarding the physical problem at hand. Again, a switching algorithm
(e.g. alternately using 3rd and 3rdCell schemes during time steps) is expected to be useful.
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After having discussed the propagation of pure gravity waves, we now consider the Rossby modes
by including the Coriolis term in the model equations. In the following, we are particularly interested
in the dissipative effects for Rossby waves in ocean and atmosphere modeling applications.

7. MODEL PROBLEM AND MODAL BEHAVIOR FOR ROSSBY MODES

In this section we consider stationary Rossby modes, i.e. we assume that the Coriolis parameter
is constant. In Section 8.3, we will consider the more general case where the model equations are
modified to include a � term to permit the propagation of the slow Rossby waves.

When the Coriolis term is taken into account, the 1D, inviscid, linearized form of the shallow
water equations may be expressed in Cartesian coordinates [24] as

�t +Hux =0 (63)

ut − f v+g�x =0 (64)

vt + f u=0 (65)

where the Coriolis parameter f is assumed constant. Periodic solutions of the form u= ũei(kx+�t),
v= ṽei(kx+�t) and �= �̃ei(kx+�t) are sought again and we obtain⎛⎜⎝

i� iHk 0

igk i� − f

0 f i�

⎞⎟⎠
⎛⎜⎝

�̃

ũ

ṽ

⎞⎟⎠=0 (66)

Letting the determinant of the matrix in the left-hand side of (66) equal to zero to obtain non-trivial
solution leads to

�(�2− f 2−gHk2)=0 (67)

The two first roots �=±√ f 2+gHk2 correspond to inertia–gravity modes and the third one, �=0,
is the geostrophic mode (or stationary Rossby mode) and it would correspond to the slow Rossby
mode on a �-plane.

The finite volume method and the temporal scheme (presented in Sections 4 and 5) are again
employed to obtain the discrete form of (63)–(65). The discretization of (63) exactly coincides with
the pure gravity wave case. Equation (65) only contains a source term ( f u) and it is discretized as

vn+1
j =vnj −��t f un+1

j −(1−�)�t f unj (68)

with 0���1. In this study, on the basis of numerical experiments, a fully implicit case for the
Coriolis term (�=1) has been chosen. The case �= 1

2 leads to similar damping while producing
more oscillations. Finally, in (64) all fluxes are basically calculated as for pure gravity wave case,
but now with the Coriolis term (− f v) treated as the source term ( f u) in (68). Again, the first-order
upwind and the � schemes are used in the following.
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A Fourier analysis is conducted at the discrete level by substituting periodic solutions of the form
(�nj ,u

n
j ,v

n
j )=Re[( �̃, ũ, ṽ )ei(kx j+�tn)] into discretized form of (63)–(65). This leads to a square

3×3 matrix system for the wave amplitudes as⎡⎢⎢⎣
E−1+ad−(�E+1−�) Hbd+(�E+1−�) 0

gbd+(�E+1−�) E−1+ad−(�E+1−�) − f �t (�E+1−�)

0 f �t (�E+1−�) E−1

⎤⎥⎥⎦
⎡⎢⎣

�̃

ũ

ṽ

⎤⎥⎦=
⎡⎢⎣
0

0

0

⎤⎥⎦ (69)

By setting the determinant of the matrix in the right-hand side of (69), a cubic equation for the
propagation factor E is obtained as follows:

c3E
3+c2E

2+c1E+c0=0 (70)

where the coefficients c0,c1,c2 and c3 for �= 1
2 are given by

c0=−1+ad−− �t2 f 2

4
− a2d−2

4
+ ad−�t2 f 2

8
+ d+2a2

4
(71)

c1=3−ad−− �t2 f 2

4
− a2d−2

4
+ 3ad−�t2 f 2

8
+ d+2a2

4
(72)

c2=−3−ad−+ �t2 f 2

4
+ a2d−2

4
+ 3ad−�t2 f 2

8
− d+2a2

4
(73)

c3=1+ad−+ �t2 f 2

4
+ a2d−2

4
+ ad−�t2 f 2

8
− d+2a2

4
(74)

Two roots of (70) are complex conjugate and correspond to inertia–gravity modes. For these
modes, |E | is graphed in Figure 10(a) with CFL=0.9 and a typical case f �t=0.1. The results are

Figure 10. Damping error |E | for various schemes for inertial gravity waves (a) and the Rossby waves
(b). Horizontal coordinate represents k�x/�.
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basically similar to those of the pure gravity wave case (Figure 8(b)), with a shift depending on
f �t . The third root of (70) is real and corresponds to the stationary Rossby wave. |E | is graphed
for this mode with CFL=0.9 and f �t=0.1 in Figure 10(b) for the first-order and � schemes. It
should be mentioned that, for Rossby waves, the � scheme is less sensitive to the CFL number than
the first-order upwind scheme. Therefore, only the results for CFL=0.9 are shown in Figure 10(b).
The Quick scheme shows less damping than the other methods in the region of interest, while the
first- and second-order upwind schemes lead to the highest level of damping. However, all schemes
examined in Figure 10(b) exhibit a high level of damping for the Rossby mode. The observed
level of damping should occur at each time step in a numerical simulation and would lead to
an excessive damping for long-term simulations. Indeed, a high-order spatial accuracy is usually
desirable for the treatment of the slow Rossby modes and has proven practical and beneficial for
atmospheric and oceanic prediction models.

8. NUMERICAL RESULTS

The Fourier analysis results obtained in the previous section for the Rossby modes are now
computationally verified by considering three numerical tests. The first one is concerned with a
single wave solution, while the second test corresponds to a Gaussian initial condition. In the third
test, which generalizes the first one, we include a � term in the model equations; hence, we are
able to observe the propagation of slow Rossby modes. In all cases periodic boundary conditions
are used and (63)–(65) are numerically solved to examine the level of damping induced by the
first-order and � schemes.

8.1. Stationary wave solution

The wave solution of (63)–(65) corresponding to the stationary Rossby wave is

�= �̃cos(kx) (75)

u=0 (76)

v=−gk

f
�̃sin(kx) (77)

Equations (75)–(77) are used here as the initial condition with �̃=0.05m, CFL=0.9, f �t=0.1
and k�x/�=0.1. The latter parameter corresponds to the region of interest.

The level of damping (per time step) that occurs in the computation of the Rossby waves is
examined in the case of the Fourier analysis and the numerical test performed here. As expected,
a very good matching between the damping for the velocity and surface elevation was found. In
Table II, the results corresponding to the damping of both fields are presented and a close agreement
between the numerical and analytical results is observed. The (explicit) first-order upwind scheme
leads to unstable results, although the amplification factors for both gravity and Rossby modes
are less than one. Indeed, as also observed in Foreman [26, 28], instability may occur even if
|E |max<1 (where |E |max is the maximum amplification factor for all modes).
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Table II. Damping (|E |) per time step of the Rossby waves
for different schemes obtained from Fourier analysis and
numerical test corresponding to CFL=0.9 and f �t=0.1.

Scheme Fourier analysis Numerical test

1st 0.99509 Unstable
2nd 0.99977 0.99975
3rd 0.99992 0.99991
Fromm 0.99988 0.99987
Quick 0.99994 0.99993
3rd Cell 0.99990 0.99989

8.2. A Gaussian water surface distribution

The following test is performed to give a physical idea about the level of damping of the stationary
Rossby waves in a more realistic case. A Gaussian distribution is prescribed at initial time and the
initial velocity field is taken to be in geostrophic equilibrium, i.e. the Coriolis and the pressure
gradient terms are balanced and we have

�(x,0)=	e−
x2 (78)

u(x,0)=0 (79)

v(x,0)=g f �x (x,0) (80)

The mesh length parameter �x=30km is taken and the domain is chosen sufficiently long to
prevent the Gaussian from approaching the boundaries. The Coriolis parameter is evaluated at 25◦N
( f =6.163465e−5s−1) with H =1.63m and the radius of deformation is thus �=√

gH/ f ≈65km.
The parameters 	 and 
 are chosen such that the e-folding radius of the initial Gaussian is resolved
by 3�x and the initial maximum azimuthal velocity is 1m/s. A simple scaling can provide more
realistic atmospheric parameters without substantially modifying the results.

Numerical results corresponding to the damping of the surface elevation are shown for various
schemes in Table III(a) and (b) with �t=15min ( f �t≈0.055) and �t=30min ( f �t≈0.111),
respectively, up to 30 days of simulation. It is observed that the Rossby modes are highly damped
and the relative level of damping for the various schemes is in accordance with the results of the
Fourier analysis shown in Figure 10(b). The level of damping in Table III(a) and (b) is almost
identical for the finite volume schemes, while the case �t=30min is marginally more dissipative.
Although the Quick scheme has the smallest level of damping, the results are still too damped for
most practical application. For the two-dimensional case, a higher level of damping is expected.

Finally, in finite volume methods, slope limiters are widely used to reduce the oscillations
resulting from phase errors. In order to examine the consequence of the slope limiter on the
accuracy of the Rossby mode approximation, the third-order upwind scheme using a typical slope
limiter [29] is employed here. This scheme performs very well in modeling shock waves [29]. The
interface values (30) are now rewritten on the form

UL
j+1/2=U j + 1

4 ((1−�s)(U j −U j−1)+(1+�s)(U j+1−U j )) (81)
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Table III. Damping of the Rossby waves for different schemes for
Gaussian initial conditions (�t=15min) (a) and �t=30min (b).

Scheme 10 days 20 days 30 days

(a)
2nd 0.80855 0.72197 0.66763
Fromm 0.87819 0.80672 0.75708
3rd Cell 0.89370 0.82711 0.77956
3rd 0.91097 0.85061 0.80605
Quick 0.93041 0.87824 0.83806
1st 0.28529 0.19982 0.16258
3rd Monotone 0.69892 0.57115 0.50429
Least-squares 0.99297 0.98625 0.97974
Galerkin 1.00000 1.00000 1.00000

(b)
2nd 0.80854 0.72197 0.66763
Fromm 0.87817 0.80672 0.75708
3rd Cell 0.89368 0.82711 0.77956
3rd 0.91095 0.85061 0.80605
Quick 0.93039 0.87823 0.83806
1st 0.28524 0.19979 0.16256
3rd Monotone 0.69892 0.57116 0.50427
Least-squares 0.98623 0.97343 0.96142
Galerkin 1.00000 1.00000 1.00000

and the slope limiter is

s= 2�−�++�

�2−+�2++�
(82)

where � is a very small number to avoid division by zero in the regions of zero slope and the
quantities �− and �+ are computed for each component of U, e.g. �, as

�− =� j −� j−1 (83)

�+ =� j+1−� j (84)

The interface value UR
j+1/2 is computed in a similar manner.

The level of damping of the third-order scheme, using the above slope limiter approach, for
the stationary Rossby modes, is shown in Table III(a) and (b) (3rdMonotone). As observed, the
level of damping of the 3rdMonotone scheme is significantly higher than the 3rd one (with �= 1

2 ).
This is also expected for most other upwind finite volume schemes as a consequence of slope
limiting. In Table III(a) and (b), the previous results are compared with those of the least-squares
and the Galerkin methods using linear approximations, obtained with �=�= 1

2 [30]. By taking
into account the dissipative nature of the least-squares scheme, the upwind finite volume schemes
appear to give over damped results in Table III(a) and (b). For real applications, Rossby modes are
computed through nonlinear models. However, nonlinear finite volume methods usually require
the use of slope limiters. Therefore, for real applications with nonlinear models, upwind finite
volume schemes should excessively damp the Rossby waves.
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8.3. A 1D Rossby wave

Here, we generalize the test of Section 8.1 by considering a modification to the model equations
(63)–(65), which has already been used by Vreugdenhil [21]. This enables us to examine the
propagation of one dimensional analogous of slow moving Rossby waves. Following Vreugdenhil
[21] the model equations are rewritten as

�t +Hux = �H

f
v (85)

ut − f v+g�x =0 (86)

vt + f u=0 (87)

where �=d f /dy. Assuming traveling wave solutions of the form u=Re[̃uei(kx+�t)], v=
Re[̃vei(kx+�t)] and �= Re[̃�ei(kx+�t)] we obtain⎛⎜⎜⎜⎝

i� iHk −�H

f

igk i� − f

0 f i�

⎞⎟⎟⎟⎠
⎛⎜⎝

�̃

ũ

ṽ

⎞⎟⎠=0 (88)

which leads to the following dispersion relation:

�3− f 2�−gHk2�−�gHk=0 (89)

For slow motions (corresponding to small values of �), we can neglect the first term in (89) and
we obtain

�=− �gHk

f 2+gHk2
(90)

or

�=− �k
1

�2
+k2

(91)

where �=√
gH/ f is the Rossby radius of deformation. Equation (89) is indeed the 1D equivalent

of the Rossby wave frequency. The amplitudes are then approximately

�̃= �2− f 2

k�g
(92)

ũ=1 (93)

ṽ=−i
f

�
(94)
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Figure 11. Numerical and exact solutions for Rossby wave after one waver period
for coarse (left) and fine (right) grids.

We now consider a particular case with the following data suggested by Vreugdenhil [21]: length
L=200km, depth H =20m, Coriolis parameter f =10−4 s−1, �=10−11. The initial conditions
are specified using (92)–(94). The numerical results obtained after one waver period using various
schemes with a coarse grid (�x=10km,�t=315s) and a fine grid (�x=5km,�t=167s) are
shown in Figure 11. A fully centered scheme is also employed for comparison. As it is observed
in Figure 11, while the centered scheme gives very accurate results, the upwind schemes again
lead to a high level of damping even for the fine grid, as expected. The results of the 3rdMonotone
scheme (not presented here) are even more damped than those of the 2nd scheme and this confirms
the results of the previous sections.

9. CONCLUSION

A class of upwind finite volume schemes including first-, second- and third-order, as well as Quick,
Fromm and a cell-based third-order methods have been studied here using a Fourier analysis
approach. Various numerical aspects including group velocity, damping, phase speed and frequency
have been considered and discussed for these schemes first for gravity waves. For most methods,
folded frequency curves with stationary 2�x waves have been observed in both the semi and fully
discrete cases. However, the 2�x waves are effectively damped although they encounter high phase
errors.

Secondly, when the effect of the Coriolis term is taken into account, all selected upwind schemes
lead to a very high (and unacceptable) damping error for the Rossby waves. An academic test
case was designed to accurately verify the Fourier analysis results. By performing three numerical
tests, it has been numerically shown that the damping of Rossby waves is even more significant
when slope limiters are used. On the basis of these results, it is concluded that most upwind finite
volume schemes, with or without slope limiters, should be used with care (if at all) for Rossby
waves and restricted to short simulations.
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